Gerstenhaber-Batalin-Vilkoviski structures on coisotropic intersections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gerstenhaber-batalin-vilkoviski Structures on Coisotropic Intersections

Let Y, Z be a pair of smooth coisotropic subvarieties in a smooth algebraic Poisson variety X. We show that any data of first order deformation of the structure sheaf OX to a sheaf of noncommutative algebras and of the sheaves OY and OZ to sheaves of right and left modules over the deformed algebra, respectively, gives rise to a Batalin-Vilkoviski algebra structure on the Tor-sheaf TorX q (OY ,...

متن کامل

Gerstenhaber-batalin-vilkoviski Structures on Coisotropic Intersections

Let Y, Z be a pair of smooth coisotropic subvarieties in a smooth algebraic Poisson variety X. We show that any data of first order deformation of the structure sheaf OX to a sheaf of noncommutative algebras and of the sheaves OY and OZ to sheaves of right and left modules over the deformed algebra, respectively, gives rise to a Batalin-Vilkoviski algebra structure on the Tor-sheaf TorX q (OY ,...

متن کامل

Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian intersecions

Let M and N be Lagrangian submanifolds of a complex symplectic manifold S. We construct a Gerstenhaber algebra structure on TorS ∗ (OM ,ON ) and a compatible Batalin-Vilkovisky module structure on ExtOS (OM ,ON ). This gives rise to a de Rham type cohomology theory for Lagrangian intersections.

متن کامل

Coisotropic Intersections

In this paper we make the first steps towards developing a theory of intersections of coisotropic submanifolds, similar to that for Lagrangian submanifolds. For coisotropic submanifolds satisfying a certain stability requirement we establish persistence of coisotropic intersections under Hamiltonian diffeomorphisms, akin to the Lagrangian intersection property. To be more specific, we prove tha...

متن کامل

Deformation of Batalin-Vilkovisky Structures

A Batalin-Vilkovisky formalism is most general framework to construct consistent quantum field theories. Its mathematical structure is called a BatalinVilkovisky structure. First we explain rather mathematical setting of a BatalinVilkovisky formalism. Next, we consider deformation theory of a BatalinVilkovisky structure. Especially, we consider deformation of topological sigma models in any dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2010

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2010.v17.n2.a2